TITLE: CO-OCCURRENCE OF BLA_{KPC-2} AND fosA GENES IN *Enterobacter cloacae* ISOLATED FROM AN URBAN RIVER IN PARAÍBA, BRAZIL.

AUTHORS: SÁ, K.R. $^{(2,6)}$; MIRANDA, J.C. $^{(5,6)}$; FERNANDES, M.R $^{(3)}$; MUÑOZ, M. $^{(3)}$; CERDEIRA,L. $^{(3)}$; LINCOPAN, N. $^{(3)}$; OLIVEIRA, C.J.B. $^{(4)}$; SANTOS FILHO, L. $^{(1,2)}$

Department of Pharmaceutical Sciences⁽¹⁾; Tropical Medicine Centre/ Health Sciences Center/UFPB⁽²⁾; Institute of Biological Sciences (ICB/USP)⁽³⁾; Department of Animal Science, Center for Agricultural Sciences (CCA/UFPB)⁽⁴⁾; Superintendence for Development of Environment in Paraiba - SUDEMA/PB.⁽⁵⁾, PRODEMA/CCEN/UFPB⁽⁶⁾.

INSTITUTION: Federal University of Paraiba. Campus I da UFPB, CEP: 58.051-900. João Pessoa/PB, Brazil. **Laboratório Associado - INPRA/INCQ/CNPq.**

ABSTRACT:

The increased prevalence of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae in the environment has been attributed to anthropogenic activities related to the overuse of antimicrobial agents. Environmental reservoirs of ESBL-producing Enterobacteriaceae is a major issue in public health since they could be transmitted to humans and other animals. Currently, the blakec-2 gene is no longer limited to K. pneumoniae species but has been identified in a wide range of Gram-negative bacteria, and in regard to CTX-M β-lactamases, isolates carrying CTX-M-8 and other genes have been found worldwide. This study reports the occurrence of an ESBL-producing Enterobacter cloacae harboring blakec-2 gene isolated from an urban river (Jaguaribe River) crossing the metropolitan area of João Pessoa city, northeastern Brazil. The isolated was recovered in a study to monitor the occurrence of multidrug-resistant (MDR) Gram-negative bacteria from urban river at water samples were collected from different locations along the Jaguaribe River and filtered using a sterile filter membrane (0.45µm) pore size. The membranes were placed in 20 ml of BHI broth (Falcon tubes) and vortexed for 10 sec. Aliquots (100µl) from each samples were streaked onto McConkey agar (McA) in paralel with McA suplemented with ceftriaxone (16µg/ml); and also McA supplemented with meropenem (1 μg/ml) plus 70μg/ml ZnSO4) in order to detect carbapenemase producing samples (KPC, Metalo) and incubated at 37^oC/18-24h. The samples were also inoculated in Chomagar ESBL and Chomagar KPC (Probac). Isolates grown on the selective plates containing ceftriaxone were screened for ESBL by the standardized disk approximation test. Isolates grown on selective plates supplemented with meropenem were screened for carbapenemase using the Carba NP test (Biomerieux). The isolates were identified by routine biochemical test and confirmed using MALDI-TOF (Bruker). Analysis and the antimicrobial resistance patterns were determined by disc diffusion method using antimicrobials belonging to four different classes: beta-lactams (carbapenems and cephalosporins); quinolones; aminoglycosides; fosfomicyn and sulfamethoxazole-trimethoprim, according EUCAST. The carbapenemaseencoding genes were screened by PCR and selected strains were analysed by Whole Genome Sequence (WGS) using a MiSeq platform (Illumina Inc., San Diego, CA). An Enterobacter cloacae strain ST 1 was shown to harbor both bla_{KPC-2} and fosA genes, as well as several other resistance genes, such asaminoglycoside-modifying enzymes [aadA1, aac(6')-lb, aph(3')-V], b-lactamase [bla_{CTX-M-8}, bla_{CMH-3}, bla_{TEM-} _{1A}, bla_{OXA-9}] and quinolones [qnrE, qnrB19, aac(6')lb-cr] encoding genes. The detection of bla_{KPC-2} and fosA genes in a single isolate suggest that some commensal Gram negative strains found in the environmental might can be highly resistant to antimicrobials and pose a risk to public health. In addition, our findings underscore the distribution of resistant bacteria and highlight a new possible reservoir of blakpc-2 harboring Enterobacteriaceae strains, as well as, several other resistance genes from environmental source. In summary, this is the first report on the occurrence of blakoc-2 and fosA in enterobacteria cultured from an urban river in northeastern Brazil. Surveillance of antimicrobial resistance in microbes from the environmental in urban regions needs to be established as a priority in order to, establish strategies to control high-risk multiresistant bacteria into the environment.

Key words: Environmental microbiology, Urban river, resistance genes